Randomness extraction from Bell violation with continuous parametric down conversion

Lijiong Shen Jianwei Lee Alessandro Cerè Le Phuc Thinh Valerio Scarani Christian Kurtsiefer

Jean-Daniel Bancal University of Basel, CH

Antia Lamas-Linares Texas Advanced Computing Center, USA

Thomas Gerrits Adriana E. Lita Sae Woo Nam *NIST, USA*

Secure private communication requires Randomness

Classical systems cannot guarantee unpredictability

Secure private communication requires Randomness

Classical systems cannot guarantee unpredictability

Non-classical correlations certify genuine randomness

Correlation for measurement settings α_x , β_y

$$E_{x,y} = P(a = b | x, y) - P(a \neq b | x, y)$$

Bell parameter from 4 settings

$$S = E_{00} + E_{01} + E_{10} - E_{11}$$

Our point to the state of the art

S. Pironio et al., Nature (2010)

B. G. Christensen et al., PRL (2013)

Y.Liu et al., PRL (2018)

P.Bierhorst et al., Nature(2018)

Bell test with CW source and two detectors

Bell test with CW source and two detectors

Correlation depends on bin width $\boldsymbol{\tau}$

Correlation depends on bin width τ

Correlation depends on bin width τ

Experimental setup

P. H. Eberhard, Phys. Rev.A(1993)

Pair generation rate \approx 24 000/s for 5 mW of UV pump

Optimal setting for loophole free Bell test - State

 $\ket{\psi}pprox$ 0.9 \ket{HV} - 0.43 \ket{VH}

Optimal setting for loophole free Bell test - State

 $\ket{\psi}pprox$ 0.9 \ket{HV} - 0.43 \ket{VH}

Optimal setting for loophole free Bell test - Projections

We observe a violation of S = 2.01602(32)

Rate of randomness

Rate of randomness

Finite statistics - Block extraction

$$m = n \cdot \eta_{\text{opt}}(\varepsilon_c, \varepsilon_s) + 4 \log rac{\epsilon_{EX}}{n} - 10$$

We choose $arepsilon_c = \varepsilon_s = 10^{-10}$

Trevisan extractor based on polynomial hashing with block weak design

In 26 min we generated 617 920 random bits (396 bits/s)

Processing time for 26mins data

٠

26 mins data \downarrow 9 hours processing

Processing time for 10 hours data

10 hours data \downarrow 28 years processing

Toeplitz extractor \downarrow 943 bits/s in few hours

Our point to the state of the art

S. Pironio et al., Nature (2010)

B. G. Christensen et al., PRL (2013)

Y.Liu et al., PRL (2018)

P.Bierhorst et al., Nature(2018)

Conclusion

SUZHOU

Observed violation changes with $\boldsymbol{\tau}$

Rate of randomness with finite block size

